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Abstract

Recent years, human-object interaction (HOI) detection
has achieved impressive advances. However, conventional
two-stage methods are usually slow in inference. On the
other hand, existing one-stage methods mainly focus on the
union regions of interactions, which introduce unnecessary
visual information as disturbances to HOI detection. To
tackle the problems above, we propose a novel one-stage
HOI detection approach DIRV in this paper, based on a
new concept called interaction region for the HOI prob-
lem. Unlike previous methods, our approach concentrates
on the densely sampled interaction regions across different
scales for each human-object pair, so as to capture the sub-
tle visual features that is most essential to the interaction.
Moreover, in order to compensate for the detection flaws
of a single interaction region, we introduce a novel voting
strategy that makes full use of those overlapped interaction
regions in place of conventional Non-Maximal Suppression
(NMS). Extensive experiments on two popular benchmarks:
V-COCO and HICO-DET show that our approach outper-
forms existing state-of-the-arts by a large margin with the
highest inference speed and lightest network architecture.
Our code will be made publicly available.

1. Introduction

Human-object interaction (HOI) detection aims to rec-
ognize and localize the interactions between human-object
pairs (e.g. sitting on a chair, riding a horse, eating an apple,
etc.). As a fundamental task of image semantic understand-
ing, it plays a vital role in many other computer vision fields
such as image captioning [9, 22], visual question answering
[14, 25] and action understanding [34, 28].

For HOI detection, almost all previous methods empha-
sized the importance of the union regions of an interaction,

* Equal contribution. Names in alphabetical order.
1 Cewu Lu is the corresponding author.

2The Chinese University of Hong Kong

sd017@ie.cuhk.edu.hk, lucewu@sjtu.edu.cn

Figure 1. Union Regions vs Interaction Regions: Conventional
approaches usually pays attention to the union region (dashed yel-
low), which contains too much redundant information. Instead,
we propose a method focusing on interaction regions (solid violet)
with different scales. In above two figures, despite distinct hu-
man/object poses, interaction regions cover the most critical seg-
ments containing the cups, hands or arms, when detecting holding
a cup.

which covers the whole human, object and intermediate
context. For instance, existing two-stage algorithms com-
monly crop the union region of a human-object pair and
then embed its visual features [11, 7, 17], while recent one-
stage methods aim to regress this union region with key-
points [18, 31] or anchor boxes [12] and use it to associate
the target human and object.

However, we find that such emphasis on union region
is counter-intuitive for human beings. In practice, it is not
necessary to observe the whole union region before making
decisions in most situations. For instance, when asked to
determine whether a man is holding a cup, we only need
to notice his hands but never care about where his feet are.
That’s to say, humans can easily target the human-object
pair of an HOI, without the needs of being told the union
regions. Based on these observations, we propose a new
recognition unit for HOI detection, called inferaction re-
gion. The interaction region denotes the region that covers



the minimal area of human and object crucial for recogniz-
ing the interaction. An example is given in Fig. 1. In this
case, an upper-body region that contains a cup and hand
would be more distinguishable than the union region.

To this end, we propose a novel one-stage HOI detector
that concentrates on the interaction regions of human-object
interactions. We assume that these regions are highly in-
formative to determine the interaction category and human-
object relative spatial configuration. To fully utilize the in-
teraction regions for HOI detection, three main technical
challenges identified as follows need to be addressed be-
forehand.

Challenge 1: how do we decide the interaction regions?
Although recent work provided part-level action labels [16],
we tend to seek a more general and simpler HOI detector
without the need for extra annotations. Empirically, we con-
sider that those human parts closer to the object are more
likely to take an indispensable effect on the interaction, and
so are the object parts. For simplicity, we consider some
rectangle regions, which cover both some parts of the hu-
man and object, as interaction regions. A natural idea comes
by applying the dense anchor boxes in one-stage object de-
tection models to represent these regions. To achieve that,
we set three overlapping thresholds between anchor boxes
and human bounding boxes, object bounding boxes as well
as union regions. We apply a dense interaction region selec-
tion manner, where all anchors satisfying these three thresh-
olds are regarded as interaction regions.

Challenge 2: an anchor box may be regarded as the in-
teraction region for multiple different HOIs. Unlike object
detection, this situation appears frequently in HOI detec-
tion. Under this condition, the anchor box needs to predict
multiple HOI labels and corresponding object locations,
where the number is unfixed. This poses extra challenges
for network design and final result association. Therefore,
we match each anchor box with only one unique interaction.
In addition, there inevitably exists some missed positive in-
teractions within the popular datasets. We develop a novel
ignorance loss based on classical focal loss [20] to address
these problems.

Challenge 3: single interaction region may lead to ambi-
guity or misrepresentation. HOI recognition relies on very
subtle visual cues in interaction regions. Some visual fea-
tures are even ambiguous, leading to the fragile result from
a single anchor. For this reason, we propose a novel voting
strategy. Each anchor only contributes a little to the final
location and classification prediction. For each interaction
type, a probability distribution is established for the rela-
tive location between each human-object pair by fusing the
prediction results of different anchors. This dense anchor
voting strategy can remarkably elevate the fault-tolerance
of each anchor and achieve a robust final prediction.

Extensive experiments show that our one-stage ap-

proach, DIRV (Dense Interaction Region Voting), out-
performs existing state-of-the-art models on two popular
benchmarks, achieving both higher accuracy and faster
speed.

2. Related Work

Human-object interaction (HOI) detection is formally
defined as retrieving (human, verb, object) triplets from im-
ages. Previous methods mainly employed a two-stage strat-
egy. In the first stage, a pre-trained object detector [19, 27]
localized both humans and objects within the image. In the
second stage, a classification network recognized the inter-
action categories for each human-object pair. Most work fo-
cused on the improvement of the second stage. Some early
work [10] simply extracted features from each human or ob-
ject instance. This method suffered from lack of contextual
information. Afterwards, more information was taken into
account rather than instance appearance, including spatial
location [2, 7, 26], human pose [5, 17, 33], word embed-
ding [!, 24], segmentations [35, 4] and human part label
[16]. Yet, these two-stage methods typically need to detect
all human-object pairs, making their inference time grow
quadratically with instance number. Furthermore, these ap-
proaches usually adopted a heavy network for classification,
which led to considerable computation overhead.

To tackle these drawbacks, some recent work developed
one-stage HOI detectors. Liao et.al. [18] and Wang et.al.
[31] posed HOI detection as a keypoint detection and group-
ing problem. Despite their impressive efficiency and accu-
racy, the interaction keypoints had no apparent character-
istics in visual patterns so the networks were not easy to
train. Kim et.al. [12] designed an anchor-based one-stage
algorithm to regress the union region of human and object.
However, as aforementioned, union region prediction is not
straight-forward and single anchor’s prediction is fragile.

Unlike all the above methods, our method makes full use
of visual patterns within interaction regions across differ-
ent scales, allowing a promising accuracy without the help
of any other proposals or annotations. The one-stage strat-
egy and concise network architecture also bring greatly im-
proved running time and space efficiency.

3. Methods

In this section, we introduce our proposed DIRV (Dense
Interaction Regions Voting) framework for human-object
interaction (HOI) detection. The problem formulation is
firstly explained in Sec. 3.1. Then, we present the net-
work architecture of our detector in Sec. 3.2. Afterwards,
the inference protocol based on voting strategy is shown in
Sec. 3.3. Finally, we demonstrate how to train our deep
neural network model in Sec. 3.4.



Figure 2. Overview of our DIRV Framework: It is composed of two components: Interaction Detector and Instance Detector. For each
interaction region, a relative spatial vector is obtained by regressing the human and object bounding boxes. During inference, results of
interaction regions vote for an object location distribution, from which HOI score is derived.

3.1. Formulation

Typically, HOI detection aims to fetch a (by,, v, b,) triplet
for each interaction within a single image =, where by, b,
denote the bounding box of human % and object o sepa-
rately, while v denotes the human action. Without consider-
ing external input like human poses [6], conventional two-
stage HOI detectors formulate the problem as

H, 0 = d(fx),

1
v; = g(bs bo, £), Vh € H, Yo € O, M)

where d(+) is a vanilla object detector, g(-) is the verb clas-
sifier for a human-object pair, fx is the appearance feature
of the whole image « and H,0 are detected humans and
objects. Since the input of g(+) relies on the output of d(-),
these two processes cannot run in parallel and g(-) would
face the combinatorial explosion problem. On the contrary,
we reformulate HOI detection as

H, O = d(fy), )

(T'(br),v,T(bo)) = g(fx),h € H,0 € O, @
where T'(+) is a target indicator that links the verb to a de-
tected human-object pair. By doing so, we can run these
two processes simultaneously.

Further, we do not adopt the common practice of
Non-Maximum Suppression (NMS) when retrieving the
(T'(br),v,T(by)). In contrast, we propose a different strat-
egy, voting, to handle the prediction of different interaction
regions. Predictions based on every anchor’s visual features
are fully utilized instead of being suppressed. The final HOI
prediction comes from the combination of each interaction
region through voting. To sum up, our algorithm is formu-
lated as Eq. 3:

H, O = d(fy),
(T(0)), 0", T(V,)) = g(£),i € {1,2,..., N},
(T'(bn),v,T(bo)) = vote({<T(bZ),v’,T(bZ)>}ie{1,...,N}%,
3)
where (T'(b}),v%, T(b})) is the prediction based on anchor
a;. IN is the number of interaction regions for this interac-
tion. We show how we obtain 7, O and (T'(b}), v*, T(b%))
for each anchor in Sec. 3.2. vote(-) is the voting strategy,
which is elaborated in Sec. 3.3.

3.2. Dense Interaction Region Detector

Our network structure is illustrated in Fig. 2. The
model is composed of two components: an instance de-
tector and an interaction detector. Each of them contains
three parallel sub-branches, which share the feature map
of the Feature Pyramid Network. We first explain the in-
stance detector for , O and then the interaction detector
for (T'(b%),v*, T(b})).

3.2.1 Instance Detector

The instance detector mainly helps instance localization and
supports the detection of none object actions, e.g. walk-
ing. It contains three sub-branches: instance classifica-
tion branch, instance regression branch and instance action
classification branch.

The instance regression and classification branches fol-
low the standard setting in most object detection networks,
which regress instance bounding boxes based on anchors as
well as classify these instances. Interactions are not consid-
ered in these two branches.

Beyond these two branches, an instance action classifi-
cation branch plays an auxiliary role in interaction classifi-



cation. It predicts the action scores of humans and objects,
helping the association of human-verb-object pair. The ac-
tions of humans and objects are treated separately, e.g., hold
and be held are classified as two different actions. If there
are C}, human actions and C, object actions, the classifi-
cation gives two scores 57 € R and s2¢ € R%. The
anchor settings follow standard object detection and only
those positive anchors involved in at least one interaction
are taken into account when calculating loss.

3.2.2 Interaction Detector

The interaction detector serves as the key of our proposed
architecture, DIRV. It directly predicts the interaction v’
and the target (T'(b} ), T'(b%)) that indicates the correspond-
ing human-object pair from the subtle visual features in in-
teraction regions. We first clarify our methodology, fol-
lowed by two key learning techniques: interaction region
decision and ignorance loss.

Methodology: To retrieve the (T'(b}),v?, T(b})) triplet,
we design three parallel sub-branches: interaction clas-
sification branch, human target branch and object target
branch for predicting v*, T'(b}, ), and T'(b?) separately.

The interaction classification branch classifies the inter-
action type v* within the interaction region (i.e. the anchor).
It obtains an interaction score prediction sfﬁt” € RY for
each interaction region a;, where C' is the number of inter-
action categories.

For human and object targets 7'(b%) and T'(b),
it is difficult to directly link the verb to the de-
tected human and object given by the instance detec-
tor since the detection branch run in parallel. Thus,
we propose an intuitive yet effective solution.  The
human target branch regresses the human bounding
box bztinter (IZfinter’yZ?inter’wZ?inteN Zfinter)
from the anchor 0% = (z%,y% w%, h®), where
(T3 inters Yn inter) 18 its bounding box center. Similarly,
the object target branch regresses the object bounding box

Z,iinter = ( Z?inter’ yg:intew wg,iinter’ h’z,iinter)‘ These pre-
dicted human and object bounding boxes serve as the target
indicators T'(b} ) and T'(b}). We can easily link the verb
v" to the detected human and object box b}, b during infer-
ence via simple post processing (e.g., loU matching), which
is introduced in Sec.3.3.

Interaction Region Decision: As explained before, the
interaction regions should cover both parts of interacting
human and object. With different scales, these regions may
provide important visual features of different levels. Inter-
estingly, we find that such a setting naturally matches the
characteristic of anchor boxes A. An anchor box a; € A
serves as an interaction region of interaction I; so long as it
satisfies the following overlapping requirement:

2

ol=1 (IoU(aj,l;Z) > tu) :

i @
i U
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where b, 0% are the ground-truth human/object bounding
box of a possible interaction pair I;. Z;Z is the union region
box of interaction I;, which is the smallest box that com-
pletely covers both b, bi. t,,tp,t, are three thresholds.
We set them as ¢, = t, = t, = 0.25, which is analyzed in
ablation study.

With the requirement above, single anchor box may
serve as the interaction region of multiple interactions,
which impedes the human/object regression. Thus, we de-
fine a overlapping level metric to ensure that an anchor box
corresponds to at most a unique interaction, i.e.,

ajﬂlgz .ajﬂi)f)

— )
b b

0! = IoU(a;, b)) +

If multiple interactions are matched with the same anchor
box, it will associate with interaction I;, where Oi =

max {Of 0] = 1} so each anchor has at most one ground-
7

truth in regression.

Ignorance Loss: For human/object target branch, we
just follow many anchor-based object detection methods
to apply the standard smooth L; loss between predicted
bt imter/Veiimter and ground-truth b, /b, on their loss func-
tions Lreg,h/Lreg,o for interaction region a;.

Yet, standard focal loss is not applicable for interaction
classification branch because of the following two reasons:
Firstly, the receptive field of an anchor may contain multi-
ple different interactions. Secondly, HOI detection datasets
have much more missed positive samples than object detec-
tion datasets. These cause serious confusion during train-
ing.

We propose a novel ignorance loss based on vanilla fo-
cal loss [20] to address both difficulties above. We eliminate
the influence of missed unlabelled interactions by removing
the background loss i.e. anchors associated with none inter-
actions don’t take effect in learning.

Further, as a solution to the multiple interactions prob-
lem, we modify the ground-truth targets of foreground an-
chors as below. For anchor a;, if there exist multiple inter-
actions {I;} within current anchor where O7 = 1, we set
the target label as

1 It = 1,0 = max{O!|07 = 1}
I¢=0,Yi,0] =1 (6)

ignored others



where ¢{ is the target label of interaction category c for an-
chor a;. If = 1 denotes interaction I; is positive for cat-
egory c, else I = 0. The above equation means that we
ignore the classification loss for those interaction categories

exist but not dominant in an anchor.

3.3. Voting Based Model Inference

Our model makes inference by combining the prediction
results of different interaction regions. Each interaction re-
gion contributes to the final interaction recognition with the
weighted localization score as weight. The inference pro-
cess is divided into three steps as follows.

3.3.1 Parallel Inference

All six sub-branches work in parallel during inference,
which dramatically reduces the inference time. From in-
stance detector, a set of human 7 and object O (H C O)
candidates are generated after NMS. For each human in-
stance, we get its bounding box by, € R*, instance classifi-
cation score s;, € R and instance action classification score
s9et € RO, s, € Ris a scalar since an instance can only
be classified as a unique object category with highest score
(here is human) while ¢! € RE* is a C-d vector. Sim-
ilarly, we obtain bounding box b, € R*, instance classifi-
cation score s, € R and instance action classification score
53¢t € R for each object.

In interaction detector, it fetches a triplet of

(s ners ST BT 1e,) from  each interaction region
a;, where by, . b0 L. € R* are the human/object

target bounding boxes and sf;}t” € RY is the interaction
classification score for each interaction region. Here, we
should have C' = C}, = C, after eliminating interactions
with none objects.

3.3.2 Object Location Estimation

We retrieve the (by,, v, b,) triplet in a human-centric manner.
For each interaction region a;, we first try to match it with a
human instance h® &€ H based on the overlapping metric,
that is

IoU(aj,by’) = m}?XIOU(aj,bh),

, 7
a; N by (
— >t

b

where by, is the human bounding box and ¢, is the thresh-
old same as that in Eq. 4. If no human instance meets the
requirement, this interaction region is abandoned.

After matching the interaction region to a detected hu-
man instance, we then search its corresponding object in-
stance. A natural thinking is to match the object like Eq.7.
However, we found that the location of object is usually not
accurate enough. To improve the robustness, we build a

heH,

(a) eat (b) talk on phone

(d) throw

Figure 3. Object Location Distribution: we visualize the target
object location distribution for some human instances of several
categories. Our voting strategy accurately localizes the objects in
these interactions.

(¢) surf

probability distribution for the object location based on the
prediction result. Referring to [8], we model it with a 2-d
Gaussian distribution:

et —rafull®
Da; (xov yo) =e 202 3
where vgljh and uzljh are the relative object locations scaled
by anchor width and height:

aj aj
aj _ [(To =Ty Yo~ Yy
Uo|h - < ng ’ hgj ) ’
aj aj a;
a; Lorinter — Lhiinter Yo,inter — Yninter
Hoip = w® ) I )

€))

and the standard deviation o is a hyper-parameter, which is
set as 0.9 in our experiments. Its influence is analyzed in
supplementary material.

After obtaining the object location distribution, we

weight it by interaction classification score sfl’;te’” as below.
l int
S,fjc(xmyo) = SZJL er 'paj (xoayo) (10)

where (z,,y,) is the center of object bounding box.
Until now, we obtain the weighted localization scores
s5¢(x,y) € R for all C interaction categories.

3.3.3 Voting Based Region Fusion

By fusing weighted localization scores of interaction re-
gions associated with same human instance by, a human-



centric object location distribution s;"*

our voting strategy:

s y) = Y s(,y), (11)

a; AR

is computed with

where Aj;, = {a;},e—p, is set of interaction regions asso-
ciated with human instance h. We visualize some examples
of the fused distribution in Fig. 3.

Eventually, we are now able to score a human-object pair
using this distribution. For each interaction region, we first
associate it with a detected object instance 0%/, like Eq. 7.

Pa,; (‘xg'j?ygj) - mg‘xpaj (moayo)7
o (12)
%0% .y,
bo

Then, Eq. 11 is rewritten for each specific human-object
pair.

0% € 0,

s = s, yo) (13)
a; EA}L,U

where A}, , denotes all the interaction regions {a; } associ-
ated human-object pair (by,, b,) where (by, b,) = (b,”, b5’ ).
Thus, the final HOI score for a human-object pair (b, b,)
can be derived as

Sh.o = 8n " 8o+ (54t 4 52ty . sif‘ose (14)

where sp,, 50, 57, s4°* have been explained in section Par-
allel Inference. When no object is involved, we simply de-
fine S, = sp, - s§°t. The HOI scores are not normalized
because we only care about their relative value for the same
interaction category.

The time complexity of voting is O(|.Au0s|), Where

Apos = hU Ap o is the set consisting of all interaction re-
,0

gions associated with any interactive human-object pairs.
The size is not very large and it is easy to compute in paral-
lel, so only a little CPU overhead is introduced.

3.4. Model Training

During training, the backbone, feature pyramid network
and instance classification/regression branches are frozen
with COCO pre-trained weight [30]. The final loss is the
sum of loss functions for other four sub-branches in Fig. 2.

L= Lregn+ Lrego+ LU + LY (15)

In interaction detector, Lyeg p,Lreg,o are the smooth L,
losses for human and object target branches separately.
Linter is our ignorance loss for interaction classification
branch. We follow focal loss [20] to set « = 0.25,y = 2.0.
In instance detector, L5 is standard binary cross-entropy
loss for instance action classification branch.

4. Experiments

In this section, we carry out comprehensive experi-
ments to demonstrate the superiority of our proposed DIRV.
Firstly, we introduce two benchmarks in Sec. 4.1 and model
implementation details in Sec. 4.2. Then, we compare the
performance of our model with other state-of-the-art ap-
proaches in Sec. 4.3. Finally, effect of some crucial con-
figurations are examined with ablation study in Sec. 4.4

4.1. Dataset and Metric

Dataset We evaluate our method on two popular datasets:
V-COCO [10] and HICO-DET [3]. V-COCO dataset is a
subset of COCO [21] with extra interaction labels. It con-
tains 10,346 images (2,533 for training, 2867 for validation
and 4,946 for testing). Each person in these images is an-
notated with 29 action categories, 4 of which (stand, smile,
walk, run) have no object. HICO-DET is a large dataset
for HOI detection by augmenting HICO dataset [3] with
instance bounding box annotations. This dataset includes
38,118 images for training and 9,658 images for testing. It
is labelled with 600 HOI types over 117 verbs and 80 object
categories.

Metric We adopt the popular evaluation metric for HOI
detection: mean average precision (mAP). A prediction is
true positive only when the HOI classification result is ac-
curate as well as bounding boxes of human and object both
have IoUs larger than 0.5 with reference to ground-truth.
Specifically, we follow prior works to report Scenario 1 role
mAP on V-COCO dataset.

4.2. Implementation Details

For HOI detection, we use EfficientDet-d3 [30] as the
backbone due to its effectiveness and efficiency. The back-
bone is pre-trained on COCO dataset. The instance classifi-
cation and regression branches are also initialized with the
COCO pre-trained weight, which is frozen during training.
We apply random flip and random crop data augmentation
approaches to our model. Adam optimizer [13] is employed
to optimize the loss function. We set the learning rate as le-
4 with a batch size of 32. All experiments are carried out on
NVIDIA RTX2080Ti GPUs.

4.3. Results and Comparison

We compare our proposed DIRV with other state-of-the-
art methods on V-COCO (Tab. 1) and HICO-DET (Tab. 2)
datasets. It is noticeable that many state-of-the-art models
utilize other additional features like human poses and lan-
guage priors. These methods require additional data, anno-
tations or models, which are quite exhaustive to collect. For
fairness, we do not take them (gray ones in both Tab. 1,2)
into account in our comparison. What’s more, unlike many



Table 1. Results on V-COCO:Proposal shows whether it needs object detection beforehand. For Additional, P,B,L denotes human pose,
human body part states and language priors respectively, which are utilized in prior methods.

Method Proposal Additional mAP,,. Inference Time (ms) Params (M)
RPpCp [17] v P 47.8 513 64M
PMFNet [33] v P 52.0 253 179M
ConsNet [23] v P+L 53.2 - -
MLCNet [29] v P+B+L 55.2 - -
InteractNet [8] v X 40.0 145 35M
iCAN [7] v X 44.7 204 89M
Zhou et.al. [35] v X 48.9 - 620M
VSGNet [32] v X 51.8 312 59M
UnionDet [12] X X 47.5 78 35M
IP-Net [31] X X 51.0 - 195M
DIRY (ours) X X 56.1 68 12M

Table 2. Results on HICO-DET: Proposal shows whether it needs object detection beforehand. For Additional, P.B,L denotes human
pose, human body part states and language priors respectively, which are utilized in prior methods.

... Default Known Object

Method Proposal  Additional Full Rare Non-Rare  Full Rare  Non-Rare
RPpCp [17] v P 17.03 13.42 18.11 19.17 15.51 20.26
PMFNet [33] v P 17.46 15.65 18.00 20.34  17.47 21.20
MLCNet [29] v P+B+L 17.95 16.62 18.35 22.28 20.73 22.74
Functional [1] v L 21.96 16.43 23.62 - - -
ConsNet [23] v P+L 22.15 17.12 23.65 - - -
InteractNet [8] v X 9.94 17.16 10.77 - - -
iCAN [7] v X 14.84 1045 16.15 16.26 11.33 17.73
UnionDet [12] X X 17.58 11.72 19.33 19.76  14.68 21.27
IP-Net [31] X X 19.56 12.79 21.58 22.05 15.77 23.92
PPDM-DLA [18] X X 20.29 13.06 22.45 23.09 16.14 25.17
DIRV (S1) X X 2140 15.52 23.15 24.53 18.66 26.28
DIRV (S2) X X 21.78 16.38 23.39 25.52  20.84 26.92

existing two-stage approaches, our method does not rely on
object proposals, which significantly elevates its compati-
bility.

For V-COCO dataset (Tab. 1), we follow prior works to
ignore the class point since it has too few samples. Com-
pared to prior arts, our approach outperforms them in accu-
racy significantly. It also has a fastest inference speed and a
least parameter number.

For HICO-DET dataset, we report the results on two dif-
ferent settings: Default and Known Objects. Meanwhile,
we explore two possible interaction classification strategies:

S1 The interaction classification branch directly recog-
nizes different verb-object pairs e.g. eating apples, as

in[7, 17].

S2 Only verb categories e.g. eating are classified in inter-
action classification branch, which are associated with
object categories e.g. apple based on the results of in-

stance classification branch, as in [12].

As shown in Tab. 2, our approach exceeds all existing meth-
ods in accuracy notably. Since Hourglass-104 backbone
has more than 10x parameters than ours, we compare with
DLA-34 based PPDM for fairness despite it still has 2x
more parameters. We can see that S2 brings a more promis-
ing performance. The reason may be that it reduces the
number of categories in interaction classification branch,
which elevates the accuracy. What’s more, it saves the space
overhead, allowing a larger batch size during training and
improving the training stability. Our approach has a supe-
riority in time and space complexity. Due to limited space,
we do not list the model parameters and inference time in
the table.

Two prior arts share some common insights with us. In-
teractNet [8] localizes objects based on single human ap-
pearance. UnionDet [12] is another anchor-based one-stage
HOI detection approach, focusing on union regions. How-
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Figure 4. Ablation Study for Voting Strategy: The m AP,
decreases as the IoU threshold for NMS grows. There is actually
no NMS when IoU threshold is 1.

ever, we surpass their performance by a large margin on
both datasets, which proves the effectiveness of our con-
centration on interaction regions and our dense interaction
region voting strategy.

In the supplementary materials, we show some qualita-
tive results of our network, which is further analyzed with
visualization.

4.4. Ablation Study

In this section, we dig into the influence of different
modules in our DIRV. For simplicity, all results here are for
V-COCO dataset. Analysis of more components are avail-
able in the supplementary materials.

Table 3. Interaction Region Overlapping Thresholds: ¢, tn, to
denote the thresholds in Eq. 4. The interaction regions become
denser as these three thresholds decrease.

th to tu mAProle

05 05 0.5 55.0
025 025 0.5 55.2
0.25 0.25 0.25 56.1

Interaction Regions Overlapping Thresholds We set
interaction regions in a dense manner for human-object
pairs. The overlapping thresholds in Eq. 4 is examined in
this part. Results in Tab. 3 certificate this dense manner,
which can make full use of the visual features.

Voting Strategy We examine the superiority of our voting
strategy by adding a NMS module for interaction regions,
which weakens the effect of voting. In Fig. 4, we set differ-
ent IoU thresholds for NMS and the performance drops as
the value of those thresholds decreases (when IoU threshold
is 1, NMS takes no effect). It reveals that interaction regions
of different scales all contribute to the final detection though
some of their classification scores may not be very high.

Table 4. Loss Function for Interaction Classification

Loss Function mAP, .
Focal Loss [20] 54.8
Foreground Loss [12] 54.0
Ignore Loss (ours) 56.1

Ignorance Loss We look into the effect of loss function in
interaction classification branch. We test the performance
with vanilla focal loss, foreground loss in [12] and our pro-
posed ignorance loss. Results in Tab. 4 verify our superi-
ority since it can help dealing with region overlapping and
missed positive labels.

Backbone We apply a novel backbone [30] to our model,
which has never been utilized for HOI detection.

We separately carry out experiments with EfficientDet-
dl1, d2, d3 and d4. To our surprise, we find that the heavier
backbone doesn’t certainly lead to better HOI detection per-
formance, according to the results in Tab. 5.

We also reproduce another anchor-based one-stage algo-
rithm UnionDet [12] with EfficientDet-d3 backbone. Re-
sults in Tab. 5 reveals that our DIRV surpasses it because of
our novel design in methodology, instead of the backbone
improvement.

Table 5. Ablation Study for Backbones: We compare the perfor-
mance of our DIRV and another anchor-based method UnionDet
[12] with different backbones.

Method Backbone (PARAMs) mAP,.,;.
UnionDet ResNe50-FPN (34M) 47.5
UnionDet EfficientDet-d3 (12M) 49.2
DIRV (ours) EfficientDet-d1 (6.6M) 46.8
DIRV (ours) EfficientDet-d2 (8.1M) 49.4
DIRV (ours) EfficientDet-d3 (12M) 56.1
DIRV (ours) EfficientDet-d4 (21M) 54.3

5. Conclusion

In this paper, we present a novel one-stage HOI detection
framework. It detects HOI in an intuitive manner by con-
centrating on the interaction regions. To compensate for the
detection flaws of single interaction region, a voting strat-
egy is applied as an alternative to conventional NMS. Our
method outperforms all existing approaches without any ad-
ditional features or proposals. Due to the one-stage struc-
ture and simple network architecture, our method reaches
a very high efficiency with least model parameters com-
pared to other state-of-the-art approaches. In the future, we
will try to incoporate the part-level knowledge [15] into our
framework.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

[13]

(14]

[15]

[16]

(17]

A. Bansal, S. S. Rambhatla, A. Shrivastava, and R. Chel-
lappa. Detecting human-object interactions via functional
generalization. CoRR, abs/1904.03181, 2019. 2,7, 11

Y.-W. Chao, Y. Liu, X. Liu, H. Zeng, and J. Deng. Learn-
ing to detect human-object interactions. In 2018 ieee winter
conference on applications of computer vision (wacv), pages
381-389. IEEE, 2018. 2

Y.-W. Chao, Z. Wang, Y. He, J. Wang, and J. Deng. HICO: A
benchmark for recognizing human-object interactions in im-
ages. In Proceedings of the IEEE International Conference
on Computer Vision, 2015. 6

H. Fang, G. Lu, X. Fang, J. Xie, Y. Tai, and C. Lu. Weakly
and semi supervised human body part parsing via pose-
guided knowledge transfer. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
70-78, 2018. 2

H.-S. Fang, J. Cao, Y.-W. Tai, and C. Lu. Pairwise body-part
attention for recognizing human-object interactions. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 51-67,2018. 2

H.-S. Fang, S. Xie, Y.-W. Tai, and C. Lu. Rmpe: Regional
multi-person pose estimation. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2334—
2343,2017. 3

C. Gao, Y. Zou, and J.-B. Huang. ican: Instance-centric
attention network for human-object interaction detection.
arXiv preprint arXiv:1808.10437,2018. 1,2,7, 11

G. Gkioxari, R. Girshick, P. Doll4r, and K. He. Detecting and
recognizing human-object interactions. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2018. 5,7, 11

L. Guo, J. Liu, J. Tang, J. Li, W. Luo, and H. Lu. Aligning
linguistic words and visual semantic units for image caption-
ing. 2019. 1

S. Gupta and J. Malik. Visual semantic role labeling. arXiv
preprint arXiv:1505.04474,2015. 2, 6

T. Gupta, A. Schwing, and D. Hoiem. No-frills human-object
interaction detection: Factorization, layout encodings, and
training techniques, 2018. 1

B. Kim, T. Choi, J. Kang, and H. J. Kim. Uniondet: Union-
level detector towards real-time human-object interaction de-
tection. In European Conference on Computer Vision, 2020.
1,2,7,8,11, 12

D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. International Conference on Learning Represen-
tations, 12 2014. 6

L. Li, Z. Gan, Y. Cheng, and J. Liu. Relation-aware graph
attention network for visual question answering. 2019. 1
Y.-L. Li, L. Xu, X. Liu, X. Huang, Y. Xu, M. Chen, Z. Ma,
S. Wang, H.-S. Fang, and C. Lu. Hake: Human activity
knowledge engine. arXiv:1904.06539, 2019. 8

Y.-L. Li, L. Xu, X. Liu, X. Huang, Y. Xu, S. Wang, H.-S.
Fang, Z. Ma, M. Chen, and C. Lu. Pastanet: Toward human
activity knowledge engine. In CVPR, 2020. 2

Y.-L. Li, S. Zhou, X. Huang, L. Xu, Z. Ma, H.-S. Fang,
Y. Wang, and C. Lu. Transferable interactiveness knowledge

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

for human-object interaction detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3585-3594, 2019. 1,2, 7, 11

Y. Liao, S. Liu, F. Wang, Y. Chen, C. Qian, and J. Feng.
Ppdm: Parallel point detection and matching for real-time
human-object interaction detection. In CVPR, 2020. 1, 2,7,
11

T. Lin, P. Dollar, R. B. Girshick, K. He, B. Hariharan, and
S. J. Belongie. Feature pyramid networks for object detec-
tion. CoRR, abs/1612.03144, 2016. 2

T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollar. Fo-
cal loss for dense object detection. CoRR, abs/1708.02002,
2017. 2,4,6,8

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollar, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In European conference on computer
vision, pages 740-755. Springer, 2014. 6

D. Liu, Z. Zha, H. Zhang, Y. Zhang, and F. Wu. Context-
aware visual policy network for sequence-level image cap-
tioning. CoRR, abs/1808.05864, 2018. 1

Y. Liu, J. Yuan, and C. W. Chen. ConsNet: Learning Con-
sistency Graph for Zero-Shot Human-Object Interaction De-
tection. arXiv e-prints, page arXiv:2008.06254, Aug. 2020.
7

C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei. Visual re-
lationship detection with language priors. In European con-
ference on computer vision, pages 852—-869. Springer, 2016.
2

W. Norcliffe-Brown, E. Vafeias, and S. Parisot. Learning
conditioned graph structures for interpretable visual question
answering. CoRR, abs/1806.07243, 2018. 1

S. Qi, W. Wang, B. Jia, J. Shen, and S.-C. Zhu. Learning
human-object interactions by graph parsing neural networks.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 401-417, 2018. 2

S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:
towards real-time object detection with region proposal net-
works. CoRR, abs/1506.01497, 2015. 2

D. Shao, Y. Zhao, B. Dai, and D. Lin. Finegym: A hier-
archical video dataset for fine-grained action understanding.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020. 1

X. Sun, X. Hu, T. Ren, and G. Wu. Human object interaction
detection via multi-level conditioned network. In Proceed-
ings of the 2020 International Conference on Multimedia Re-
trieval, ICMR °20, page 26-34. Association for Computing
Machinery, 2020. 7

M. Tan, R. Pang, and Q. V. Le. Efficientdet: Scalable and
efficient object detection. 2019. 6, 8

M. D. e. Tiancai Wang, Tong Yang. Learning human-object
interaction detection using interaction points. 2020. 1, 2, 7,
11

O. Ulutan, A. S. M. Iftekhar, and B. S. Manjunath. Vsgnet:
Spatial attention network for detecting human object interac-
tions using graph convolutions. arXiv, 2020. 7, 11

B. Wan, D. Zhou, Y. Liu, R. Li, and X. He. Pose-aware
multi-level feature network for human object interaction de-



[34]

(35]

tection. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 9469-9478, 2019. 2,7, 11
J. Wu, L. Wang, L. Wang, J. Guo, and G. Wu. Learning ac-
tor relation graphs for group activity recognition. In CVPR,
2019. 1

T. Zhou, W. Wang, S. Qi, H. Ling, and J. Shen. Cascaded
human-object interaction recognition. pages 4263-4272,
2020. 2,7



Supplementary Materials for Paper “DIRV: Dense Interaction Region
Voting for End-to-End Human-Object Interaction Detection”

In this supplement, we provide more analysis and exper-
iments not included in the main paper due to space limita-
tion. They are listed as follows:

e Analysis of performance and efficiency is given in
Sec. A. We compare our method with other existing
ones.

e We show some qualitative results of our proposed in-
teraction regions in Sec. B

e More ablation studies are conducted to examine some
components of our DIRV in Sec. C.

e We visualize some examples of HOI detection in var-
ious cases to analyze the generality of our DIRV in
Sec. D.

A. Performance and Efficiency

As mentioned in the main paper, our DIRV surpasses
other state-of-the-art approaches in accuracy with both
fewer parameters and faster inference speed.

For parameter counting, we follow the estimation strat-
egy in [1] to calculate the parameter number of iCAN [7]
and TIN [17]. Similar estimation is also applied to Union-
Det [12], InteractNet [8] and IP-Net [31] since the authors
did not provide open-source codes. For VSGNet [32] and
PMFNet [33], parameters are counted based on the open-
source codes.

For time estimation, we consider the sum of the object
detection time and HOI detection time for those two-stage
approaches, including iCAN [7], TIN [17], InteractNet [8]
and VSGNet [32]. We run different models on a NVIDIA
RTX2080Ti GPU and some results are referred from other
published work [12, 18].

In Fig. 5, we illustrate the performance of different mod-
els versus inference time and parameter number separately
on V-COCO dataset. It is apparent that our DIRV outper-
forms others remarkably with a significant superiority in
both time and space efficiency.
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Figure 5. mAP versus Inference Time/Parameter Number on
V-COCO dataset: Our proposed DIRV reaches a new state-of-
the-art 56.1 mAP,,. with fastest inference time (68 ms) and
fewest parameters (13M) compared with previous methods.

Figure 6. Examples of Interaction Regions: Red and blue rect-
angles respectively denote the interacting humans and objects. In-
teraction regions are drawn in purple. During training, interaction
regions are actually much denser than these illustrations.

B. Analysis of Interaction Regions

We provide more examples of interaction regions with
different scales in Fig. 6, where each interaction region is
associated with a specific human-object interaction. These
interaction regions are composed of parts of the human,



object and context, containing visual features essential for
HOI detection.

Figure 7. Scores of Interaction Regions: It shows object location
probability pa, (QL’ZJ Lyl ) and interaction classification scores
si’;t” of interaction regions for different human-object pairs. In-
teraction regions of positive and negative pairs are marked in or-

ange and blue separately.

Fig. 7 visualizes the interaction classification scores
sfl’;t” versus object location probability p,, (x5’ ,yo’) of
different interaction regions for some human-object pairs.
We mark positive (with interactions) and negative (w/o in-
teractions) pairs with different colors. There are two hints
in this image. Firstly, positive pairs are predicted with no-
tably higher interaction classification scores in most interac-
tion regions since our interaction regions capture the most
crucial visual features for interactions. Secondly, object lo-
cation probability for positive regions is not certainly very
high. The relative spatial relationship is reflected from some
very subtle visual features, which are hard to be completely
discovered from a single interaction region. This corrobo-
rates the necessity of our voting strategy.

As a supplement, we also illustrate interaction detector
results of some single interaction regions in Fig. 8. Most
single regions can fetch satisfying classification results but
there exist clear errors in object localization. However,
since the errors are distributed in all directions uniformly,
they are counterbalanced through voting.

C. More Ablation Studies

We add three extra ablation studies on V-COCO dataset
here. Firstly, we verify the significance of interaction de-
tector, which serves as the key of our DIRV. Then, we ex-
amine the effect of backbone networks. Eventually, we con-
sider different values for the standard deviation o of the 2-d
Gaussian distribution in Eq. 8 of the main paper.

C.1. Interaction Detector

Since the results can be derived from the instance detec-
tor alone, we try to eliminate the whole interaction detector.

Figure 8. Detection Result of Single Interaction Region: Yellow
dotted rectangles denote the interaction regions. We visualize the
object location distribution and list the classification results for
each interaction region. Note that here hit-instr means hit with
instrument in the upper line, whose target object is the racket.

In this case, we have
Sh,o = Sh * So - (sfet 4 s2et) (16)

in place of Eq. 14 in the main paper. Results in Tab. 6 wit-
ness a dramatic drop of 15.5 mAP, which verifies the indis-
pensability of our novel interaction detector.

Table 6. Results with Instance Detector Alone: The lack of in-
teraction detector brings significant performance drop. And Effi-
cientDet backbone only leads to limited improvement compared
to ResNet-50.

Method

Backbone mAP,. ;.

ResNet-50-FPN 384
EfficientDet-d3 40.6

EfficientDet-d3 56.1

Instance Detector
Instance Detector

DIRV

C.2. Backbone

In our main paper, ablation study in Sec. 4.4 has ex-
amined the significance of our dense interaction regions,
voting strategy and ignorance loss separately in three sub-
sections. Further, we want to ensure that our improvement
doesn’t come from the backbone solely. In Tab. 6, we com-
pare the performance of two baselines with only the in-
stance detector. They are equipped with two different back-
bones: ResNet-50-FPN and EfficientDet-d3. The former
result comes from this paper [12]. It is noticeable that the
EfficientDet backbone only brings a modest elevation com-
pared to the common used ResNet-50-FPN.

C.3. Standard Deviation for Location Distribution

In this part, we analyze the hyper-parameter o for the
Gaussian distribution of the relative object location (Eq. 8
in the main paper). We find that the model performance is
not very sensitive to this standard deviation, as is shown in



Fig. 9. It shows the reliability and robustness of our inter-
action region prediction and voting strategy.

Figure 9. Ablation Study for Standard Deviation o of Object
Location Distribution

D. Detection Visualization

We present some visualization of DIRV results in
Fig. 10. For each human, the corresponding interaction la-
bels and target objects are displayed in the same color. We
mainly pay attention to examples with different characteris-
tics. In these examples, our proposed DIRV deals with var-
ious situations very well, despite their special difficulties as
follows.

For humans and objects vary in different sizes, our dense
interaction regions can easily capture visual features of dif-
ferent scales, resulting in high confidence and accuracy.

For objects remote from humans, there exist less inter-
active clues in interaction regions, which makes the pre-
diction harder than close human-object pairs. Despite the
overall great performance, several ambiguous interactions
(e.g. catch and throw) share some common features, bring-
ing possible detection flaws. Multiple interactions of same
or different humans may share overlapping interaction re-
gions, which generates potential confusion during training.
Yet, our proposed DIRV solved these problems well, ob-
taining satisfying performance in these cases.

Since our interaction regions focus on parts of humans
or objects most essential for interaction, incomplete human
or object instances can hardly have any negative influence
on the detection.

All the examples above verify the strong generality of
our proposed approach. We are looking forward to its wide
application in different practical applications.



(a) large humans or objects

(b) small humans or objects

(c) humans remote from target objects

(d) humans close to target objects

(e) humans interacting with multiple objects

(f) different HOI pairs overlapping with each other

(g) incomplete humans or objects

Figure 10. Visualization of Detection Results



